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Abstract. In this paper we extend the notion of Lichnerowicz–Poisson cohomology to Jacobi
manifolds. We study the relation of the so-called Lichnerowicz–Jacobi cohomology with the
basic de Rham cohomology and the cohomology of the Lie algebra of functions relative to the
representation defined by the Hamiltonian vector fields. A natural pairing with the canonical
homology is constructed. The relation between the Lichnerowicz–Poisson cohomology of a
quantizable Poisson manifold and the Lichnerowicz–Jacobi cohomology of the total space of
a prequantization bundle is obtained. Particular cases of cosymplectic, contact and locally
conformal symplectic manifolds are discussed. Finally, the Lichnerowicz–Jacobi cohomology
of a non-transitive example is studied.

1. Introduction

Poisson and Jacobi manifolds have gained much attention since their introduction by
Lichnerowicz ([21, 22], see also [2, 20, 31]). The most appealing fact concerning these
manifolds is the existence of a bracket of functions satisfying the Jacobi’s identity. In the
case of Poisson manifolds the history goes back to Lagrange, Poisson, Hamilton and Lie
(see [31, 32]). Indeed, a Poisson bracket is introduced in mechanics in order to put in a
canonical way the motion equations. Lichnerowicz showed that a Poisson bracket{ , } on
the algebra of functions on a manifoldM actually comes from a skew-symmetric tensor
field3 of type (2, 0) in such a way that the Jacobi identity is equivalent to the vanishing of
the Schouten–Nijenhuis bracket [3,3]. The relation between both formulations is provided
by the formula{f, g} = 3(df, dg), which is a link between the algebra of functions onM
and the geometry of the manifold.

More general types of brackets were discussed by Shiga for the space of the sections
of a vector bundle, and for Kirillov for line bundles [23, 14]. These brackets have a local
nature (the property to be derivations in each argument is lost) and they lead to the notion of
Jacobi bracket. Again, it was Lichnerowicz [22] who interpreted this notion in a geometrical
way. A Jacobi structure on a manifoldM consists of a pair(3,E), where3 is a skew-
symmetric(2, 0)-type tensor field andE is a vector field onM such that [3,3] = 2E ∧3
and [E,3] = 0. The manifoldM endowed with a Jacobi structure is called a Jacobi
manifold. The relation with the Jacobi bracket of functions is provided by the formula
{f, g} = 3(df, dg)+ fE(g)− gE(f ).
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It is obvious that a Jacobi structure withE = 0 is Poisson. Thus, Poisson (and
hence symplectic) manifolds are the first examples of Jacobi manifolds. But there are
many examples of strictly non-Poisson Jacobi manifolds. For instance, contact and locally
conformal symplectic manifolds are Jacobi. In fact, Lichnerowicz has proved that any Jacobi
manifold possesses a generalized foliation whose leaves are contact or locally conformal
symplectic manifolds. In particular, a Poisson manifold is foliated by symplectic leaves.

In [21] Lichnerowicz studied the Chevalley–Eilenberg cohomology of the Lie algebra
of the functions on a Poisson manifold(M,3), with special emphasis on the so-called
1-differentiable cohomology. Let us recall that ak-cochain in the Chevalley–Eilenberg
complex is called 1-differentiable if it is defined by a first-order differential operator on
functions. An interesting subcomplex of the 1-differentiable complex is that which consists
of pure 1-differentiable cochains, that is, those cochains defined from skew-symmetric
contravariant tensor fields. The resultant cohomology operator on the contravariant
Grassmann algebra onM is given byσ(P ) = −[3,P ], and the associated cohomology
is called the Lichnerowicz–Poisson (LP) cohomology. This cohomology is related to the
de Rham cohomology, but it is of a different nature. In fact, ifM is symplectic they are
isomorphic, but the result does not hold for arbitrary Poisson manifolds. Even more, the
computation of the LP-cohomology may be very difficult (see [31]). The operatorσ plays a
key role in the geometric quantization procedure developed by Vaisman [30, 31] for Poisson
manifolds, which extends the well known Konstant–Souriau one. Indeed, since we have
to handle contravariant tensors instead of differential forms, we need to use the operatorσ

instead of the exterior differential.
On the other hand, in [22] Lichnerowicz studied the Chevalley–Eilenberg cohomology

on the Lie algebra of the functions on a Jacobi manifold(M,3,E). He related the
cohomology of the subcomplex of the 1-differentiable cochains with the LP-cohomology of
the poissonization ofM (the tangentially exact Poisson manifold associated withM in the
terminology of Lichnerowicz) and he proved that in some cases the tangent 1-differentiable
cohomology is trivial. He also obtained the derivations of the different algebras associated
to M.

However, there is an alternative cohomology associated withM: the cohomology of the
Lie algebra of the functions relative to the representation defined by the Hamiltonian vector
fields (see section 4). We call itH–Chevalley–Eilenberg cohomology and it was used by
Vaisman [30] to study the prequantization representations of the Lie algebra of functions
on a Jacobi manifold. This fact leads us to believe that this cohomology may be used to
construct the quantization of a Jacobi manifold. It should be noted that theH–Chevalley–
Eilenberg cohomology of a Poisson manifold coincides with its usual Chevalley–Eilenberg
cohomology.

The purpose of this paper is to extend and study the cohomology operatorσ to Jacobi
manifolds. If (M,3,E) is a Jacobi manifold we defineσ(P ) = −[3,P ] + kP , for a
k-vectorP . The restriction ofσ to the skew-symmetric contravariant tensor fields which
are invariant with respect toE is the desired extension. The resultant cohomology is
called Lichnerowicz–Jacobi (LJ) cohomology ofM. If M is Poisson it coincides with
the LP-cohomology. The LJ-cohomology ofM is isomorphic to the cohomology of a
subcomplex of theH–Chevalley–Eilenberg complex, and it is also related to the basic de
Rham cohomology ofM (with respect toE).

The paper is organized as follows. After some introductory definitions and results in
section 2, we define the LJ-cohomology of a Jacobi manifold in section 3. Its relation with
theH–Chevalley–Eilenberg cohomology is ellucidated in section 4. In section 5 we relate
the LJ-cohomology with the basic de Rham cohomology with respect toE. In section 6 we
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define a natural pairing between the LJ-cohomology and the canonical homology introduced
in [5, 7]. This pairing extends the one for Poisson manifolds studied in [2]. The relation
between the LP-cohomology of a quantizable Poisson manifold and the LJ-cohomology of
the Jacobi structure induced on the total space of a prequantization bundle is discussed
in section 7. In sections 8–10, we study in detail the LJ-cohomology of a cosymplectic
manifold and of the transitive Jacobi manifolds: contact and locally conformal symplectic
manifolds. We end the paper by studying the LJ-cohomology of a non-transitive example.

2. Jacobi and Poisson manifolds

All the manifolds considered in this paper are assumed to be connected.
A Jacobi structureon am-dimensional manifoldM is a pair (3,E) where3 is a

2-vector andE a vector field onM satisfying the following properties:

[3,3] = 2E ∧3 [E,3] = 0. (1)

Here [, ] denotes the Schouten–Nijenhuis bracket. The manifoldM endowed with a Jacobi
structure is called aJacobi manifold. A bracket of functions (theJacobi bracket) is defined
by

{f, g} = 3(df, dg)+ fE(g)− gE(f ) for all f, g ∈ C∞(M,R). (2)

The Jacobi bracket{ , } is skew symmetric, satisfies the Jacobi identity and

support{f, g} ⊂ (supportf ) ∩ (supportg).

Thus, the spaceC∞(M,R) of C∞ real-valued functions onM endowed with the Jacobi
bracket isa local Lie algebrain the sense of Kirillov [14]. Conversely, a structure of local
Lie algebra onC∞(M,R) defines a Jacobi structure onM (see [12, 14]). If the vector field
E vanishes then{ , } is a derivation in each argument and, therefore{ , } defines aPoisson
bracket onM. In this case, (1) reduces to

[3,3] = 0 (3)

and(M,3) is a Poisson manifold.
Examples of Poisson manifolds are symplectic and cosymplectic manifolds.
A symplectic manifoldis a pair(M̄, �̄), whereM̄ is an even-dimensional manifold and

�̄ is a closed non-degenerate 2-form onM̄. We define a Poisson 2-vector3̄ on M̄ by

3̄(ᾱ, β̄) = �̄([̄−1(ᾱ), [̄−1(β̄)) (4)

for all ᾱ, β̄ ∈ �1(M̄), where�1(M̄) is the space of 1-forms on̄M and[̄ : X(M̄) −→ �1(M̄)

is the isomorphism ofC∞(M̄,R)-modules defined bȳ[(X̄) = iX̄�̄.
A cosymplectic manifold(see [19]) is a triple(M̄, 8̄, η̄), whereM̄ is an odd-dimensional

manifold,8̄ is a closed 2-form and̄η is a closed 1-form onM̄ such thatη̄∧ 8̄m is a volume
form, with dimM̄ = 2m + 1. If [̄ : X(M̄) −→ �1(M̄) is the isomorphism ofC∞(M̄,R)-
modules defined bȳ[(X̄) = iX̄8̄ + (iX̄η̄)η̄, then the vector field̄ξ = [̄−1(η̄) is called the
Reeb vector fieldof M̄. The vector fieldξ̄ is characterized by the relationsiξ̄ 8̄ = 0 and
iξ̄ η̄ = 1. A 2-vector3̄ on M̄ is defined by

3̄(ᾱ, β̄) = 8̄([̄−1(ᾱ), [̄−1(β̄)) = 8̄([̄−1(ᾱ − ᾱ(ξ̄ )η̄), [̄−1(β̄ − β̄(ξ̄ )η̄)) (5)

for all ᾱ, β̄ ∈ �1(M̄). Thus,(M̄, 3̄) becomes a Poisson manifold.
Other interesting examples of Jacobi manifolds, which are not Poisson manifolds, are the

contact manifolds and the locally conformal symplectic manifolds which we will describe
below.
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Let M be a(2m+ 1)-dimensional manifold andθ be a 1-form onM. We said thatθ is
a contact 1-form ifθ ∧ (dθ)m 6= 0 at every point. In such a case(M, θ) is called acontact
manifold (see, for example, [3]). A contact manifold(M, θ) is a Jacobi manifold. In fact,
we define the 2-vector3 onM by

3(α, β) = dθ([−1(α), [−1(β)) (6)

for all α, β ∈ �1(M), where[ : X(M) −→ �1(M) is the isomorphism ofC∞(M,R)-
modules given by[(X) = iX dθ + θ(X)θ . The vector fieldE is just the Reeb vector field
ξ = [−1(θ) of (M, θ). We remark thatiξ θ = 1 andiξ dθ = 0.

An almost symplectic manifoldis a pair (M,�), whereM is an even-dimensional
manifold and� is a non-degenerate 2-form onM. An almost symplectic manifold is
said to belocally conformal symplectic (l.c.s.)if for each pointx ∈ M there is an open
neighbourhoodU such that d(e−σ�) = 0, for some functionσ : U −→ R. If U = M then
M is said to be aglobally conformal symplectic (g.c.s.)manifold (see for example [29]).
An almost symplectic manifold(M,�) is l.(g.)c.s. if and only if a closed (exact) 1-formω
exists such that

d� = ω ∧�. (7)

The 1-formω is called theLee 1-formof M. It is obvious that the l.c.s. manifolds with
Lee 1-form identically zero are just the symplectic manifolds. We define a 2-vector3 and
a vector fieldE by

3(α, β) = �([−1(α), [−1(β)) E = [−1(ω) (8)

for all α, β ∈ �1(M), where[ : X(M) −→ �1(M) is the isomorphism ofC∞(M,R)-
modules defined by[(X) = iX�. Then(M,3,E) is a Jacobi manifold. Note that

ω(E) = 0 LEω = 0 LE� = 0. (9)

The contact and l.c.s. manifolds are called thetransitive Jacobi manifolds(see [8]).
Now, let (M,3,E) be a Jacobi manifold. Define a mapping # :�1(M) −→ X(M)

from the space of 1-forms�1(M) onM onto the Lie algebraX(M) of the vector fields on
M as follows

(#α)(β) = 3(α, β) (10)

for α, β ∈ �1(M).

Remark 2.1.For a contact manifoldM with Reeb vector fieldξ , we have that #(α) =
−[−1(α) + α(ξ)ξ . For a l.c.s. manifoldM, we obtain that #= −[−1. Finally, for a
cosymplectic manifoldM̄ with Reeb vector field̄ξ , we deduce that̄#(ᾱ) = −[̄−1(ᾱ)+ᾱ(ξ̄ )ξ̄ .

If f is aC∞ real-valued function on a Jacobi manifoldM, the vector fieldXf defined
by

Xf = #(df )+ fE (11)

is called theHamiltonian vector fieldassociated withf . It should be noted that the
Hamiltonian vector field associated with the constant function 1 is justE. A direct
computation proves that [Xf ,Xg] = X{f,g} (see [22, 24]).

Now, for everyx ∈ M, we consider the subspaceDx of TxM generated by all the
Hamiltonian vector fields evaluated at the pointx. In other words,Dx = #x(T ∗x M)+ 〈Ex〉.
SinceD is involutive, one easily follows thatD defines a generalized foliation, which is
called thecharacteristic foliation in [8]. Moreover, the Jacobi structure ofM induces a
transitive Jacobi structure on each leafL (for a more detailed study of the characteristic
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foliation of a Jacobi manifold we refer to [8]). IfM is a Poisson manifold then, from (10)
and (11), we deduce that the characteristic foliation ofM is just thecanonical symplectic
foliation of M (see [21, 32]).

A Jacobi manifold(M,3,E) is said to beregular if the vector fieldE is complete,
E 6= 0 at every point and the one-dimensional foliation defined byE is regular in the
sense of Palais [25]. In such a case, the space of leavesM̄ = M/E has a structure of a
differentiable manifold and the canonical projectionπ : M −→ M̄ is a fibration (surjective
submersion). Moreover, we can define a 2-vector3̄ on M̄ by

3̄(ᾱ, β̄) ◦ π = 3(π∗ᾱ, π∗β̄) ∀ᾱ, β̄ ∈ �1(M̄).

Note that, from (1),3̄ is well defined and(M̄, 3̄) is a Poisson manifold (see [8]).

3. Lichnerowicz–Jacobi cohomology

Let (M̄, 3̄) be a Poisson manifold andVk(M̄) the space ofk-vectors onM̄. The differential
operatorσ̄ : Vk(M̄) −→ Vk+1(M̄) given by

σ̄ (P̄ ) = −[3̄, P̄ ] (12)

defines a cohomology operator onV∗(M̄) = ⊕kVk(M̄). The cohomology of the
corresponding differential complex(V∗(M̄), σ̄ ) is denoted byH ∗LP(M̄) and called theLP-
cohomology of M̄ (for more details, see [21]). Note thatσ̄ (3̄) = 0 and thus3̄ defines
a cohomology class inH 2

LP(M̄). This fact is important, for instance, in the geometric
quantization of Poisson manifolds (see [30, 31]; see also [13]).

Now, let (M,3,E) be a Jacobi manifold. We define the differential operatorσ :
Vk(M) −→ Vk+1(M) as follows (see [18])

σ(P ) = −[3,P ] + kE ∧ P for P ∈ Vk(M). (13)

From a straightforward computation, using (1) and (13), we conclude the following.

Proposition 3.1.If (M,3,E) is a Jacobi manifold,σ is the differential operator given by
(13) andLE denotes the Lie derivative with respect toE, then:

LE ◦ σ = σ ◦ LE (14)

σ 2(P ) = −LEP ∧3 for P ∈ Vk(M) (15)

σ(P ∧Q) = σ(P ) ∧Q+ (−1)kP ∧ σ(Q) for P ∈ Vk(M) andQ ∈ V∗(M). (16)

Denote byVkI (M) the subspace ofVk(M) defined by

VkI (M) = {P ∈ Vk(M)/LEP = [E,P ] = 0}
that is,VkI (M) is the subspace of invariantk-vectors with respect to the vector fieldE. It is
clear thatV0

I (M) is the spaceC∞B (M,R) = {f ∈ C∞(M,R)/E(f ) = 0} of basic functions
onM. Moreover,VkI (M) is aC∞B (M,R)-module. Also, from proposition 3.1, the following
corollary follows.

Corollary 3.2. Let (M,3,E) be a Jacobi manifold andσ the differential operator given by
(13). If P ∈ VkI (M), thenσ(P ) ∈ Vk+1

I (M) andσ 2(P ) = 0.

This last result allows us to introduce the differential complex

· · · −→ Vk−1
I (M)

σI−→VkI (M)
σI−→Vk+1

I (M) −→ · · ·
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whereσI = σ|V∗I (M) andV∗I (M) = ⊕kVkI (M). This complex defines a cohomology which is
called the LJ-cohomologyof (M,3,E). The kth LJ-cohomology group is then given by

Hk
LJ(M) =

ker{σI : VkI (M) −→ Vk+1
I (M)}

Im{σI : Vk−1
I (M) −→ VkI (M)}

.

Note that3 ∈ V2
I (M), E ∈ V1

I (M), σI (3) = 0 andσI (E) = 0. Consequently,3 andE
define cohomology classes inH 2

LJ(M) andH 1
LJ(M), respectively. On the other hand, using

(16) we have that∧ induces an associative product inH ∗LJ(M) = ⊕kHk
LJ(M). Also, it is clear

that if M is a Poisson manifold then the LJ-cohomology ofM is just the LP-cohomology.
Below we will describe an interesting subcomplex of(V∗I (M), σI ).
Let VkIE(M) be the subspace ofVkI (M) defined by

VkIE(M) = {P ∈ Vk(M)/LEP = 0 andE ∧ P = 0}.
SinceσI (E) = 0, thenσI induces a subcomplex(V∗IE(M), σIE), whereσIE = (σI )|V∗IE(M)
andV∗IE(M) = ⊕kVkIE(M). The cohomology of this subcomplex is denoted byH ∗LJE(M)

and called theE-LJ-cohomologyof M.
The following result relates theE-LJ-cohomology and the LJ-cohomology ofM.

Proposition 3.3.Let (M,3,E) be a Jacobi manifold andθ a 1-form onM such that
θ(E) = 1 andLEθ = 0. Then:

(i) there is an exact sequence of complexes

0−→ (V∗IE(M), σIE)
i−→(V∗I (M), σI )

π−→(V∗+1
IE (M),−σIE) −→ 0

where i : V∗IE(M) −→ V∗I (M) is the inclusion map andπ : V∗I (M) −→ V∗+1
IE (M) is the

epimorphism defined byπ(Q) = E ∧Q, for everyQ ∈ V∗I (M).
(ii) This exact sequence induces a long exact cohomology sequence

· · · −→ Hk
LJE(M)

i∗k−→Hk
LJ(M)

π∗k−→Hk+1
LJE (M)

1∗k−→Hk+1
LJE (M) −→ · · ·

with connecting homomorphism1∗.

Futher results on theE-LJ-cohomology ofM will be obtained in section 7.

4. Lichnerowicz–Jacobi cohomology andH–Chevalley–Eilenberg cohomology

First, we recall the definition of the cohomology of a Lie algebraA with values (or
coefficients) in anA-moduleM (we will follow [31]).

Let (A, [ , ]) be a real Lie algebra (not necessarily finite dimensional) andM be a
linear space endowed with a bilinear multiplicationA×M −→M such that [a1, a2]m =
a1(a2m)− a2(a1m). In such a case, one says thatM is anA-module relative to the given
representation ofA onM. Then, ak-linear skew-symmetric mappingck : Ak −→ M
is called anM-valuedk-cochain and these cochains form a linear spaceCk(A;M). The
formula

(∂kc
k)(a0, . . . , ak) =

k∑
i=0

(−1)iaic
k(a0, . . . , âi , . . . , ak)

+
∑
i<j

(−1)i+j ck([ai, aj ], a0, . . . , âi , . . . , âj , . . . , ak)
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defines a coboundary since, as for the exterior differential d,∂k+1 ◦ ∂k = 0. Hence, we have
the corresponding cohomology spaces

Hk(A;M) = ker{∂k : Ck(A;M)→ Ck+1(A;M)}
Im{∂k−1 : Ck−1(A;M)→ Ck(A;M)} .

This cohomology is calledthe cohomology of the Lie algebraA with values (or coefficients)
in M, or relative to the given representation ofA onM. Because of the Jacobi identity,
any Lie algebra (A, [ , ]) is anA-module, to be denoted by(A-ad), for the operationa.a′ =
[a, a′]. The cochains ofA with values inA-ad are calledChevalley–Eilenberg cochains,
and the corresponding cohomology spaces are theChevalley–Eilenberg cohomology spaces
of A.

Next, we will study the relation between the LJ-cohomology of a Jacobi manifoldM

and the cohomology of the Lie algebra(C∞(M,R), {, }) relative to the representation of
C∞(M,R) on C∞(M,R) defined by the Hamiltonian vector fields.

Let (M,3,E) be a Jacobi manifold and(C∞(M,R), { , }) the Lie algebra of the
C∞ real-valued functions onM endowed with the Jacobi bracket. Using the fact that
[Xf ,Xg] = X{f,g} for f, g ∈ C∞(M,R), we deduce thatC∞(M,R) is aC∞(M,R)-module
relative to the representation

C∞(M,R)× C∞(M,R) −→ C∞(M,R) (f, g) −→ Xf (g).

The cohomology of the Lie algebra(C∞(M,R), { , }) relative to the above representation
defined by the Hamiltonian vector fields is called theH–Chevalley–Eilenberg cohomology of
M. We will denote byCkHCE(M) to thek-cochains in theH–Chevalley–Eilenberg complex
of M, by ∂H to theH–Chevalley–Eilenberg cohomology operatorand byHk

HCE(M) to the
kth H–Chevalley–Eilenberg cohomology group.

Remark 4.1.If M is a Poisson manifold then, sinceXf (g) = {f, g} for f, g ∈ C∞(M,R),
we deduce that theH–Chevalley–Eilenberg cohomology ofM is just the Chevalley–
Eilenberg cohomology.

Now, let i : Vk(M) −→ CkHCE(M) be the monomorphism of real vector spaces given
by

i(P )(f1, . . . , fk) = P(df1, . . . ,dfk) (17)

for all P ∈ Vk(M) andf1, . . . , fk ∈ C∞(M,R).
A direct computation, using (2), (10), (11) and (13), proves the following.

Proposition 4.2.Let (M,3,E) be a Jacobi manifold and∂H be theH–Chevalley–Eilenberg
cohomology operator. Suppose thatP ∈ Vk(M), that i : Vk(M) −→ CkHCE(M) is the
monomorphism defined by (17) and thatσ : Vk(M) −→ Vk+1(M) is the differential operator
given by (13).

(i) If f0, . . . , fk ∈ C∞(M,R) then,

(∂H (i(P ))− i(σ (P )))(f0, . . . , fk) =
k∑

j=0

(−1)jfj (i(LEP ))(f0, . . . , f̂j , . . . , fk).

(ii) LEP = 0 if and only if ∂H (i(P )) = i(σ (P )).

The above result suggests introducing the following definition.

Definition 4.3.Let (M,3,E) be a Jacobi manifold and̃P ∈ CkHCE(M). The k-cochainP̃
is said to be pure 1-differentiable if there existsP ∈ VkI (M) such thatP̃ = i(P ).
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Remark 4.4.
(i) Definition 4.3 generalizes for Jacobi manifolds the notion of pure 1-differentiable

k-cochain in a Poisson manifold (see [21]).
(ii) If (M,3,E) is a Jacobi manifold and̃P ∈ CkHCE(M) thenP̃ is pure 1-differentiable

if and only if for f1, g1, f2, . . . , fk ∈ C∞(M,R) we have

P̃ (f1g1, f2, . . . , fk) = f1P̃ (g1, f2, . . . , fk)+ g1P̃ (f1, f2, . . . , fk)

E(P̃ (f1, . . . , fk))−
k∑

j=1

P̃ (f1, . . . , E(fj ), . . . , fk) = 0.

Denote by C̃kHCE(M) the subspace of pure 1-differentiablek-cochains on a Jacobi
manifold (M,3,E). Proposition 4.2 and the results of section 3 allow us to introduce
the following subcomplex of theH–Chevalley–Eilenberg complex ofM:

· · · −→ C̃k−1
HCE(M)

∂̃H−→C̃kHCE(M)
∂̃H−→C̃k+1

HCE(M) −→ · · ·
where ∂̃H = (∂H )|C̃∗HCE(M) and C̃∗HCE(M) = ⊕kC̃kHCE(M). This subcomplex defines a

cohomology which is denoted bỹH ∗HCE(M). Using proposition 4.2, we deduce that
the isomorphismi : VkI (M) −→ C̃kHCE(M) induces an isomorphism of complexes
i : (V∗I (M), σI ) −→ (C̃∗HCE(M), ∂̃H ). Therefore, we conclude with the following theorem.

Theorem 4.5.Let (M,3,E) be a Jacobi manifold. Then thekth LJ-cohomology group
Hk

LJ(M) is isomorphic to the cohomology group̃Hk
HCE(M).

5. Lichnerowicz–Jacobi cohomology and basic de Rham cohomology in a Jacobi
manifold

In this section, we will obtain a homomorphism between the basic de Rham cohomology
and the LJ-cohomology of a Jacobi manifold.

Let (M,3,E) be a Jacobi manifold. The mapping # :�1(M) −→ X(M) can be
extended to a mapping, which we also denote by #, from the space ofk-forms�k(M) on
M onto the space ofk-vectorsVk(M) by putting:

#(f ) = f #(α)(α1, . . . , αk) = (−1)kα(#α1, . . . ,#αk) (18)

for f ∈ C∞(M,R), α ∈ �k(M) andα1, . . . , αk ∈ �1(M).
We remark that ifα andβ are forms onM, then

#(α ∧ β) = #α ∧ #β. (19)

Denote byσ the differential operator given by (13).

Proposition 5.1.If (M,3,E) is a Jacobi manifold andα is a form onM then,

LE(#α) = #(LEα) (20)

σ(#α) = −#(dα)+ #(iEα) ∧3. (21)

Proof. Let α be a 1-form onM. Then, from (1) and (10), we have that

0= (LE3)(α, β) = β(LE(#α))− β(#(LEα)) (22)

for β ∈ �1(M). Thus,LE(#α) = #(LEα) which, using (19), implies (20).
Now, a straightforward computation proves that

[3, #α] = [3, iα3] = #(dα)− 1
2iα[3,3]
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for α ∈ �1(M). Therefore, from (1) and (13), we obtain that

σ(#α) = −#(dα)+ α(E)3. (23)

Finally, using (16), (19) and (23), we deduce (21). �
A k-form α on a Jacobi manifold(M,3,E) is calledbasic if iEα = 0 andLEα = 0.
Next, we consider the subcomplex of the de Rham complex given by the basic forms:

· · · −→ �k−1
B (M)

dB−→�kB(M)
dB−→�k+1

B (M) −→ · · ·
where�kB(M) is the space of basick-forms, and dB = d|�∗B(M). Its cohomology is denoted
by H ∗B(M) and called thebasic de Rham cohomologyof (M,3,E) (see [5, 7]).

From (20), we deduce that ifα ∈ �kB(M) then #α ∈ VkI (M). Consequently, the
mapping # :�∗(M) −→ V∗(M) induces a homomorphism #B : �∗B(M) −→ V∗I (M) of
C∞B (M,R)-modules. Moreover, from (21), we obtain that

σI ◦ #B = −#B ◦ dB (24)

and, therefore, we deduce the following.

Theorem 5.2.Let (M,3,E) be a Jacobi manifold. Then, the mapping #B induces a
homomorphism of complexes #B : (�∗B(M), dB) −→ (V∗I (M),−σI ). Thus, we have the
corresponding homomorphism in cohomology #B : H ∗B(M) −→ H ∗LJ(M).

Remark 5.3.For a Poisson manifoldM,H ∗B(M) is the de Rham cohomology ofM and #B =
#. Consequently, using theorem 5.2, we obtain a homomorphism # :H ∗dR(M) −→ H ∗LP(M)

between the de Rham cohomology ofM and its LP-cohomology (see [21, 31]). In the
particular case whenM is a symplectic manifold then the homomorphism # :H ∗dR(M) −→
H ∗LP(M) is an isomorphism (see, for instance [31]).

Now, for a Jacobi manifoldM, we consider the homomorphism ofC∞B (M,R)-modules
#̃B : �kB(M) −→ Vk+1

IE (M) given by

#̃B(α) = E ∧ #B(α). (25)

From (16), (24) and (25), we obtain the following theorem.

Theorem 5.4.Let (M,3,E) be a Jacobi manifold. Then, the mapping#̃B induces a
homomorphism of complexes̃#B : (�∗B(M), dB) −→ (V∗+1

IE (M), σIE). Thus, we have
the corresponding homomorphism in cohomology#̃B : H ∗B(M) −→ H ∗+1

LJE (M).

6. Natural pairing Lichnerowicz–Jacobi cohomology-canonical homology

Let us recall the notion of canonical homology for Jacobi manifolds introduced in [5, 7]
which generalizes in a natural way the canonical homology for Poisson manifolds.

Let δ : �k(M) −→ �k−1(M) be the differential operator given by

δ = i(3) ◦ d− d ◦ i(3). (26)

Note that, ifM is a Poisson manifold,δ is just theKoszul operator(see [4, 17]).
Denote byδB the restriction ofδ to �kB(M). It was proved in [5, 7] thatδB(�kB(M)) ⊆

�k−1
B (M) andδ2

B = 0. These results allow us to introduce the differential complex

· · · −→ �k+1
B (M)

δB−→�kB(M)
δB−→�k−1

B (M) −→ · · ·
which is called thecanonical complexof M. The homology of this complex is denoted
by H can

∗ (M), and it is called thecanonical homologyof M (we refer to [5, 7] for a more
detailed study).
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Now, consider the natural pairing〈 , 〉 : �k(M)× Vk(M) −→ C∞(M,R) defined by

〈α, P 〉 = i(P )α (27)

where i(P ) denotes the contraction byP .
Using (13), (26), (27) and the fact that [[i(P ), d], i(Q)] = i([P,Q]) we deduce the

following.

Proposition 6.1.If α ∈ �kB(M) andP ∈ VkI (M), then〈α, P 〉 ∈ C∞B (M,R). Moreover,

〈α, σI (Q)〉 − 〈δBα,Q〉 = −δB i(Q)α, for α ∈ �kB(M) andQ ∈ Vk−1
I (M).

From proposition 6.1 we obtain the following theorem.

Theorem 6.2.Let (M,3,E) be a Jacobi manifold. The mapping〈 , 〉 defined in (27) induces
a natural pairing

〈 , 〉 : H can
k (M)×Hk

LJ(M) −→ H can
0 (M)

given by

〈[α], [P ]〉 = [〈α, P 〉].

7. Quantizable Poisson manifolds and Lichnerowicz–Jacobi cohomology

In this section, we will study the relationship between the LP-cohomology of a quantizable
Poisson manifoldM̄ and the LJ-cohomology of the total space of a prequantization bundle
of M̄. For this purpose, we will recall some definitions and results (see [6, 30, 31]).

As is well known, a one-to-one correspondence exists between the equivalence classes of
principal circle bundles over a manifold̄M and the cohomology groupH 2(M̄,Z). In fact, if
�̄ is an integer closed 2-form on̄M then there exists a principal circle bundleπ : M −→ M̄

over M̄ with connection formθ such that�̄ is the curvature for the connectionθ , that is,
π∗�̄ = dθ (see [15]).

Now, let π : M −→ M̄ be a principal circle bundle over a manifold̄M endowed with
a connection formθ . If P̄ is a k-vector onM̄, k > 1, we define thehorizontal lift of P̄ to
M as thek-vector P̄ H onM characterized by the following conditions:

P̄ H (π∗ᾱ1, . . . , π
∗ᾱk) = P̄ (ᾱ1, . . . , ᾱk) ◦ π iθ P̄

H = 0 (28)

for ᾱ1, . . . , ᾱk ∈ �1(M̄). We remark that ifP̄ = X̄1 ∧ . . . ∧ X̄k with X̄i ∈ X(M̄) then

P̄ H = X̄H1 ∧ . . . ∧ X̄Hk . (29)

If f̄ ∈ C∞(M̄,R), thehorizontal lift of f̄ toM is theC∞ real-valued function onM given
by π∗(f̄ ).

Next, suppose that(M̄, 3̄) is a Poisson manifold.
We say thatM̄ is a quantizable Poisson manifold(see [30, 31]) if there exists a closed

2-form �̄ that represents an integral cohomology class ofM̄ such that

#̄[�̄] = [3̄] (30)

where#̄ :Hk
dR(M̄) −→ Hk

LP(M̄) is the induced homomorphism (see remark 5.3). It is clear
that (30) is equivalent to the existence of a vector fieldĀ on M̄ and an integer closed 2-form
�̄ on M̄ such that

3̄+ LĀ3̄ = #̄(�̄). (31)
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Remark 7.1.If M̄ is a symplectic manifold with symplectic form̄ω then, using (4), (18)
and remark 2.1, we obtain that#̄(ω̄) = 3̄. Thus, from remark 5.3, we deduce thatM̄ is
quantizable as a Poisson manifold if and only ifM̄ is quantizable as a symplectic manifold,
that is (see [16]), if [̄ω] ∈ H 2(M̄,Z). Note that, in this case,

Ā = 0 and �̄ = ω̄. (32)

Let (M̄, 3̄) be a quantizable Poisson manifold andĀ, �̄ a vector field and an integer
closed 2-form onM̄ satisfying (31). Consider the principal circle bundleπ : M −→ M̄

over M̄ corresponding to [̄�] ∈ H 2(M̄,Z), which is called aprequantization bundleof M̄.
In [6] we proved that onM there exists a Jacobi structure(3,E) and a 1-formθ such that
(M,3,E) is a regular Jacobi manifold and the corresponding quotient Poisson manifold
M/E is just (M̄, 3̄). Moreover,

θ(E) = 1 LEθ = 0. (33)

In fact,θ is a connection form inπ : M −→ M̄ with curvature form�̄, E is the infinitesimal
generator of the action ofS1 onM and3 is given by

3 = 3̄H + E ∧ ĀH . (34)

Conversely, a compact regular Jacobi manifold(M,3,E) endowed with a 1-formθ
satisfying (33) is the total space of a prequantization bundle of a quantizable Poisson
manifold (see [6]).

Remark 7.2.Let (M̄, 3̄) be a quantizable symplectic manifold with symplectic 2-form�̄.
We have that [̄�] ∈ H 2(M̄,Z) and that the principal circle bundleπ : M −→ M̄ over M̄
corresponding to [̄�] is a prequantization bundle of̄M. Moreover, ifθ is a connection form
in π : M −→ M̄ with curvature form�̄ then θ is a contact 1-form onM and the Jacobi
structure onM defined by the contact 1-formθ is just the induced Jacobi structure onM
by the quantizable symplectic manifold(M̄, �̄) (see [6]).

Next, we will obtain the relationship between the LP-cohomology of a quantizable
Poisson manifoldM̄ and theE-LJ-cohomology of the total space of a prequantization
bundle ofM̄.

Theorem 7.3.Let (M̄, 3̄) be a quantizable Poisson manifold which admits a prequantization
bundleπ : M −→ M̄. Suppose thatθ is a connection form inπ : M −→ M̄, and that
(3,E) is the associated Jacobi structure onM. Denote byσI (respectivelyσ̄ ) the LJ-
cohomology (respectively LP-cohomology) operator onM (respectivelyM̄). For every
k, 06 k 6 dimM̄, we define the isomorphism̄φk : Vk(M̄) −→ Vk+1

IE (M) given by

φ̄k(P̄ ) = E ∧ P̄ H . (35)

Then, φ̄k induces an isomorphism of complexesφ̄ : (V∗(M̄), σ̄ ) −→ (V∗+1
IE (M),−σIE),

where σIE = (σI )|V∗IE(M). Therefore, thekth LP-cohomology groupHk
LP(M̄) of M̄ is

isomorphic to the(k + 1)th E-LJ-cohomology groupHk+1
LJE (M) of M.

Proof. Note that from (28), (33) and (35), we deduce thatφ̄k is just an isomorphism. In
fact, the inverse homomorphism is defined by

φ̄−1
k : Vk+1

IE (M) −→ Vk(M̄) P −→ P̄

whereP̄ is the uniquek-vector onM̄ such thatP̄ H = iθP .
On the other hand, using (29) and the properties of the Schouten–Nijenhuis bracket, we

have that

[3̄H , P̄ H ] − E ∧ iθ [3̄H , P̄ H ] = [3̄, P̄ ]H (36)
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for P̄ ∈ Vk(M̄). Finally, from (12), (13), (28) and (34)–(36), it follows thatφ̄k(σ̄ (P̄ )) =
−σIE(φ̄k−1(P̄ )), for P̄ ∈ Vk−1(M̄). This completes the proof. �

Using theorem 7.3, we deduce that the homomorphisms of complexesi :
(V∗IE(M), σIE) −→ (V∗I (M), σI ) and π : (V∗I (M), σI ) −→ (V∗+1

IE (M),−σIE) defined in
proposition 3.3 induce a monomorphism of complexesĩ : (V∗−1(M̄),−σ̄ ) −→ (V∗I (M), σI )
and an epimorphism of complexesπ̃ : (V∗I (M), σI ) −→ (V∗(M̄), σ̄ ), respectively. In fact,
if Q̄ ∈ Vk−1(M̄) andP ∈ VkI (M), we get

ĩk(Q̄) = E ∧ Q̄H π̃k(P ) = P̄ with P̄ H = P − E ∧ iθP . (37)

Now, we conclude the following.

Theorem 7.4.Let (M̄, 3̄) be a quantizable Poisson manifold which admits a prequantization
bundleπ : M −→ M̄. Suppose thatσI (respectivelyσ̄ ) is the LJ-cohomology (respectively
LP-cohomology) operator onM (respectivelyM̄). Then:

(i) there is an exact sequence of complexes

0−→ (V∗−1(M̄),−σ̄ ) ĩ−→(V∗I (M), σI )
π̃−→(V∗(M̄), σ̄ ) −→ 0

(ii) this exact sequence induces a long exact cohomology sequence

· · · −→ Hk−1
LP (M̄)

ĩ∗k−→Hk
LJ(M)

π̃∗k−→Hk
LP(M̄)

1̃∗k−→Hk
LP(M̄) −→ · · ·

with connecting homomorphism̃1∗;
(iii) if the LP-cohomology groups ofM̄ have finite dimension then the LJ-cohomology

groups ofM also have finite dimension.

Next, in order to apply theorem 7.4 to the particular case of a quantizable symplectic
manifold, we will give an explicit expression of the connecting homomorphism1̃∗k . For
this purpose, we will prove some results.

Let (M̄, 3̄) be a quantizable Poisson manifold which admits a prequantization bundle
π : M −→ M̄. Suppose thatθ is a connection form inπ : M −→ M̄ with curvature form
�̄ and that(3,E) is the associated Jacobi structure onM.

If P̄ ∈ Vk(M̄) then, from (28) and (33), we have thatLE(iθ [3̄H , P̄ H ]) =
iθ (LE [3̄H , P̄ H ]) = 0. Thus, we can define the homomorphism ofC∞(M̄,R)-modules
Dθ : Vk(M̄) −→ Vk(M̄) by:

Dθ (P̄ ) = Q̄ with Q̄H = iθ [3̄H , P̄ H ]. (38)

Denote by[̄ : X(M̄) −→ �1(M̄) the homomorphism ofC∞(M̄,R)-modules given by

[̄(X̄) = iX̄�̄ (39)

for X̄ ∈ X(M̄). We deduce the following.

Lemma 7.5.The homomorphismDθ defines a derivation of degree 0 of the algebraV∗(M̄)
andDθ (f̄ ) = 0 andDθ (X̄) = −#̄([̄(X̄)), for f̄ ∈ C∞(M̄,R) andX̄ ∈ X(M̄).

Proof. Using (29), (38) and the properties of the Schouten–Nijenhuis bracket, we obtain
thatDθ is a derivation of degree 0 of the algebraV∗(M̄).

Now, if f̄ ∈ C∞(M̄,R) then, from (38), it follows thatDθ (f̄ ) = 0.
On the other hand, ifX̄ ∈ X(M̄), using (28), (39) and the fact that dθ = π∗(�̄), we

have thatLX̄H θ = π∗([̄(X̄)). This implies that

iθ [3̄
H , X̄H ] = iθ (LX̄H 3̄H ) = −i(LX̄H θ)3̄H = −(#̄([̄(X̄)))H .

Therefore,Dθ (X̄) = −(#̄([̄(X̄)). �
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Remark 7.6.If (M̄, �̄) is a quantizable symplectic manifold then, from (39), remark 2.1
and lemma 7.5, we deduce thatDθ (P̄ ) = kP̄ , for P̄ ∈ Vk(M̄).

Let P̄ be ak-vector onM̄ such thatσ̄ (P̄ ) = 0.
From (12), (13), (28), (34) and (36), we obtain that

σI (P̄
H ) = E ∧ (kP̄ H + (−1)k(LĀH P̄ H )− (Dθ (P̄ ))H ).

Thus, sinceE ∧ (LĀP̄ )H = E ∧ (LĀH P̄ H ) (see (28)), we have that (see (37))

σI (P̄
H ) = ĩk(kP̄ + (−1)kLĀP̄ −Dθ (P̄ )). (40)

Consequently, using (37), (40) and the definition of the connecting homomorphism1̃∗k , we
conclude that

1̃∗k([P̄ ]) = [kP̄ + (−1)kLĀP̄ −Dθ (P̄ )]. (41)

Corollary 7.7. Let (M̄, �̄) be a 2m-dimensional quantizable symplectic manifold of finite
type which admits a prequantization bundleπ : M −→ M̄. If θ is a connection form in
π : M −→ M̄ with curvature form�̄ then(M, θ) is a regular contact manifold and

Hk
LJ(M)

∼= Hk
dR(M̄)⊕Hk−1

dR (M̄) H 2m+1
LJ (M) ∼= H 2m

dR (M̄)
∼= R (42)

for 06 k 6 2m, whereHl
dR(M̄) denotes thelth de Rham cohomology group of̄M.

Proof. From (41) and remark 7.6, we deduce that the connecting homomorphism1̃∗k
vanishes (note that in this casēA = 0). Therefore, the result follows using remarks 5.3 and
7.2 and theorem 7.4. �

Next, we will apply corollary 7.7 to two particular cases: the two-dimensional unit
sphereS2 and the two-dimensional real torusT2.

Example 7.8.Let i : S2 −→ R3 be the canonical inclusion and(x, y, z) the usual
coordinates inR3. We consider onS2 the symplectic 2-form�̄ defined by:

�̄ = 1

4π
i∗(x dy ∧ dz − y dx ∧ dz + z dx ∧ dy).

[�̄] is a generator of the integer cohomology groupH 2(S2,Z) = Z. Consequently, the
symplectic manifold(S2, �̄) is quantizable.

As is well known, the special unitary groupSU(2) is the total space of the principal
circle bundle overS2 corresponding to the integer closed 2-form̄�. In fact, if we identify
SU(2) with the three-dimensional unit sphereS3 via the diffeomorphism

(x1, x2, x3, x4) ∈ S3 7→
(
x1+ ix2 −x3+ ix4

x3+ ix4 x1− ix2

)
∈ SU(2) (43)

then the projection of the bundle is theHopf fibration π : SU(2) ∼= S3 −→ S2 and the
action ofS1 on S3 is the usual one (see [6]).

Now, we will describe the contact and Jacobi structures induced onSU(2). Denote by
σ1, σ2 andσ3 the Pauli matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

Then, the matrices{√π iσ1,
√
π iσ2, 2π iσ3} form a basis of the Lie algebra ofSU(2) which

defines onSU(2) a basis of left invariant vector fields{X, Y, ξ}. Moreover, if {α, β, θ} is
the dual basis of left invariant 1-forms, we have thatθ is a connection form in the principal
circle bundleπ : SU(2) ' S3 −→ S2 with curvature form�̄ (see [6]). Thus,θ is a contact
1-form onSU(2) and the Jacobi structure(3,E) defined byθ on SU(2) is just the Jacobi
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structure onSU(2) induced by the quantizable symplectic manifold(S2, �̄). In fact (see
[6]),

3 = X ∧ Y E = ξ.
Finally, from corollary 7.7, we conclude that

H 0
LJ(SU(2)) = 〈[1]〉 ∼= R H 1

LJ(SU(2)) = 〈[E]〉 ∼= R
H 2

LJ(SU(2)) = 〈[3]〉 ∼= R H 3
LJ(SU(2)) = 〈[E ∧3]〉 ∼= R.

Example 7.9.Let �̃ be the usual symplectic 2-form onR2, �̃ = dq ∧ dp, (q, p) being the
canonical coordinates onR2. Denote by�̄ the symplectic 2-form onT2 = R2/Z2 induced
by �̃. [�̄] is a generator of the integer cohomology groupH 2(T2,Z) = Z. Thus, the
symplectic manifold(T2, �̄) is quantizable.

Now, let H be theHeisenberg group. It is well known thatH is the Lie group of
matrices of real numbers of the form

A =
( 1 q t

0 1 p

0 0 1

)
with q, p, t ∈ R. H is a simply connected nilpotent three-dimensional Lie group. A global
system of coordinates(q, p, t) onH is defined byq(A) = q, p(A) = p, t (A) = t .

A basis of right invariant vector fields onH is given by

X̃ = ∂

∂q
+ p ∂

∂t
Ỹ = ∂

∂p
ξ̃ = ∂

∂t
.

Denote by0 the subgroup of matrices ofH with integer entries and byM = H/0 the space
of left cosets;M is a compact nilmanifold. The vector fields̃X, Ỹ , ξ̃ on H all descend to
M; denote the vector fields induced onM by X, Y andξ , respectively.

The spaceM is a principal circle bundle overT2. The projectionπ : M −→ T2 of the
bundle is defined byπ [(q, p, t)] = [(q, p)]. The infinitesimal generator of the action of
S1 onM is the vector fieldξ . Moreover, if θ̃ is the right-invariant 1-form onH given by
θ̃ = dt −p dq, thenθ̃ induces a 1-formθ onM andθ is a connection form in the principal
circle bundleπ : M −→ T2 with curvature form�̄ (see [6]).

Therefore, the Jacobi structure(3,E) defined onM by the contact 1-formθ is just the
Jacobi structure induced onM by the quantizable symplectic manifold(T2, �̄). In fact, we
have that

3 = X ∧ Y E = ξ.
Finally, from corollary 7.7, we conclude that

H 0
LJ(M) = 〈[1]〉 ∼= R H 1

LJ(M) = 〈[X], [Y ], [E]〉 ∼= R3

H 2
LJ(M) = 〈[3], [E ∧X], [E ∧ Y ]〉 ∼= R3 H 3

LJ(M) = 〈[E ∧3]〉 ∼= R.

8. Lichnerowicz–Jacobi cohomology of cosymplectic manifolds

In this section, we will study the LJ-cohomology of a cosymplectic manifold. Note that,
since a cosymplectic manifold is a Poisson manifold, the LJ-cohomology is just the LP-
cohomology.

Let (M̄, 8̄, η̄) be a cosymplectic manifold. Denote by[̄ : X(M̄) −→ �1(M̄) the
isomorphism ofC∞(M̄,R)-modules given bȳ[(X̄) = iX̄8̄ + η̄(X̄)η̄. Then, [̄ can be
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extended to a mapping, also denoted by[̄, from the spaceVk(M̄) onto the space�k(M̄) by
putting:

[̄(X̄1 ∧ . . . ∧ X̄k) = [̄(X̄1) ∧ . . . ∧ [̄(X̄k) (44)

for X̄1, . . . , X̄k ∈ X(M̄). Thus,[̄ is also an isomorphism ofC∞(M̄,R)-modules. Moreover,
if #̄ : �k(M̄) −→ Vk(M̄) is the mapping defined in section 5 (see (18)) then, using (19),
(44) and remark 2.1, we deduce the following.

Proposition 8.1.Let (M̄, 8̄, η̄) be a cosymplectic manifold with Reeb vector fieldξ̄ . For
every ᾱ ∈ �k(M̄) we have that

#̄ᾱ = (−1)k[̄−1(ᾱ)+ ξ̄ ∧ #̄(iξ̄ ᾱ).

Now, we consider the submodule�k
ξ̄
(M̄) of �k(M̄) given by �k

ξ̄
(M̄) = {ᾱ ∈

�k(M̄)/iξ̄ ᾱ = 0}, and define the operator dξ̄ : �k
ξ̄
(M̄) −→ �k+1

ξ̄
(M̄) by

dξ̄ ᾱ = dᾱ − η̄ ∧ iξ̄ dᾱ for ᾱ ∈ �k
ξ̄
(M̄). (45)

We have that d2
ξ̄
= 0 (see [9]) and thus we can consider the corresponding differential

complex(�∗
ξ̄
(M̄), dξ̄ ). We denote byH ∗

ξ̄
(M̄) the cohomology of this complex.

Let σ̄ denote the LP-cohomology operator on̄M. We obtain the following.

Theorem 8.2.Let (M̄, 8̄, η̄) be a cosymplectic manifold with Reeb vector fieldξ̄ . Suppose
that F̄k : �k

ξ̄
(M̄) ⊕ �k−1

ξ̄
(M̄) −→ Vk(M̄) is the homomorphism ofC∞(M̄,R)-modules

given by

F̄k(ᾱ, β̄) = #̄ᾱ + ξ̄ ∧ #̄β̄.

(i) F̄k induces an isomorphism of complexesF̄ : (�∗
ξ̄
(M̄),−dξ̄ )⊕ (�∗−1

ξ̄
(M̄), dξ̄ ) −→

(V∗(M̄), σ̄ ).
(ii) For everyk, 06 k 6 dimM̄, we have thatHk

LP(M̄)
∼= Hk

ξ̄
(M̄)⊕Hk−1

ξ̄
(M̄).

Proof. Sinceη̄ is closed,Lξ̄ 8̄ = 0 andLξ̄ η̄ = 0, we have thatLξ̄ ([̄−1(ᾱ)) = [̄−1(Lξ̄ ᾱ),
for ᾱ ∈ �k(M̄).Thus, using (5), we prove that

σ̄ (ξ̄ ) = 0. (46)

From (16), (45), (46), the results of section 5 and since#̄η̄ = 0, we conclude that̄F is a
homomorphism of complexes. Moreover, using (19), (44) and proposition 8.1, we obtain
that F̄k is an isomorphism ofC∞(M̄,R)-modules. In fact, the inverse homomorphism is
defined by

P̄ ∈ Vk(M̄) −→ F̄−1
k (P̄ ) = ((−1)k([̄(P̄ )− η̄ ∧ iξ̄ [̄(P̄ )), (−1)k−1iξ̄ [̄(P̄ ))

∈ �k
ξ̄
(M̄)⊕�k−1

ξ̄
(M̄).

�

In [9] (see also [10]) the authors have proved that ifM̄ is a (2m + 1)-dimensional
cosymplectic manifold then

H can
k (M̄) ∼= H 2m+1−k

ξ̄
(M̄)⊕H 2m−k

ξ̄
(M̄) (47)

whereH can
k (M̄) is thekth canonical homology group of̄M.

From (47) and theorem 8.2, we obtain the following.
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Corollary 8.3. Let M̄ be a (2m + 1)-dimensional cosymplectic manifold. Then thekth
canonical homology groupH can

k (M̄) of M̄ is isomorphic to the(2m+1−k)th LP-cohomology
groupH 2m+1−k

LP (M̄), for all k.

It is clear that the LP-cohomology groups of a compact symplectic manifold have finite
dimension (see remark 5.3). Using theorem 8.2, we will prove that the corresponding
result does not hold for compact cosymplectic manifolds. In fact, we will construct a
counterexample.

Example 8.4.Let N̄ be a compact symplectic manifold with symplectic 2-form�̄. Consider
the following cosymplectic structure(8̄, η̄) on M̄ = N̄ × S1:

8̄ = (pr1)∗(�̄) η̄ = (pr2)∗(θ) (48)

wherepr1 and pr2 are the canonical projections of̄M onto the first and second factor,
respectively, andθ is the length element ofS1. Note that the Reeb vector field̄ξ of M̄ is
the vector fieldξ̄ on S1 characterized by the conditionθ(ξ̄ ) = 1.

Denote byH ∗dR(N̄) the de Rham cohomology of̄N , and consider theR-bilinear mapping

Hk
dR(N̄)× C∞(S1,R) −→ Hk

ξ̄
(M̄) ([ᾱ], f ) −→ [pr∗2(f )pr

∗
1(ᾱ)].

Since Hk
dR(N̄) has finite dimension we deduce that the above mapping induces an

isomorphism between the real vector spacesHk
dR(N̄)⊗C∞(S1,R) andHk

ξ̄
(M̄). In particular,

Hk

ξ̄
(M̄) has infinite dimension. Thus, the LP-cohomology groups ofM̄ have also infinite

dimension. In fact, using theorem 8.2, we conclude that

Hk
LP(M̄)

∼= (Hk
dR(N̄)⊗ C∞(S1,R))⊕ (Hk−1

dR (N̄)⊗ C∞(S1,R))

for 06 k 6 dimM̄.

Remark 8.5.
(i) It is clear that if [�̄] ∈ H 2(N̄,Z) then [8̄] ∈ H 2(M̄,Z).
(ii) Let (M̄, 8̄, η̄) be a compact cosymplectic manifold such that [8̄] ∈ H 2(M̄,Z).

Suppose thatπ : M −→ M̄ is the principal circle bundle over̄M corresponding to [̄8].
Then,M̄ is a quantizable Poisson manifold andπ : M −→ M̄ is a prequantization bundle
of M̄ (see [6]). Moreover, there exists a l.c.s. structure onM in such a sense thatM is a
regular l.c.s. manifold and the corresponding quotient Poisson manifold is justM̄ (see [6]
and example 10.3). Using the results of section 10 (see remark 10.5 and corollary 10.9),
we can prove that the LJ-cohomology groups ofM have finite dimension. However, in
general, the LP-cohomology groups ofM̄ do not have finite dimension (see example 8.4).

9. Lichnerowicz–Jacobi cohomology of contact manifolds

In this section, we will study the LJ-cohomology of a contact manifold.
Let (M, θ) be a contact manifold. Denote by[ : X(M) −→ �1(M) the isomorphism

of C∞(M,R)-modules given by[(X) = iX(dθ)+ θ(X)θ . The isomorphism[ : X(M) −→
�1(M) can be extended to a mapping, which we also denote by[, from the spaceVk(M)
onto the space�k(M) by putting:

[(X1 ∧ . . . ∧Xk) = [(X1) ∧ . . . ∧ [(Xk) (49)

for X1, . . . , Xk ∈ X(M). Thus,[ is also an isomorphism ofC∞(M,R)-modules. Moreover,
if # : �k(M) −→ Vk(M) is the mapping defined in section 5 (see (18)) then, using (19),
(49) and remark 2.1, we deduce the following.
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Proposition 9.1.Let (M, θ) be a contact manifold and(3,E) the associated Jacobi structure
onM. For everyα ∈ �k(M), we have

#α = (−1)k [−1(α)+ E ∧ #(iEα).

If #B is the restriction of # to the basic forms andσI is the LJ-cohomology operator,
we obtain the following.

Theorem 9.2.Let (M, θ) be a contact manifold and(3,E) the associated Jacobi structure on
M. Suppose thatFk : �kB(M)⊕�k−1

B (M) −→ VkI (M) is the homomorphism ofC∞B (M,R)-
modules given by

Fk(α, β) = #B(α)+ E ∧ #B(β).

(i) Fk induces an isomorphism of complexesF : (�∗B(M),−dB)⊕ (�∗−1
B (M), dB) −→

(V∗I (M), σI ).
(ii) For everyk, 06 k 6 dimM, we have thatHk

LJ(M)
∼= Hk

B(M)⊕Hk−1
B (M).

Proof. Using (16), the results of section 5 and the fact thatσI (E) = 0, we conclude that
F is a homomorphism of complexes.

On the other hand, from (49) and sinceiEθ = 1 and iE dθ = 0, it follows that
LE ◦ [ = [ ◦ LE . Therefore, we can define the homomorphism ofC∞B (M,R)-modules
Gk : VkI (M) −→ �kB(M)⊕�k−1

B (M) by

Gk(P ) = ((−1)k([(P )− θ ∧ iE[(P )), (−1)k−1iE[(P )).

Finally, using (19), (49) and proposition 9.1, we obtain thatGk is the inverse homomorphism
of Fk. �
Remark 9.3.

(i) Equation (42) follows directly from theorem 9.2.
(ii) Let (M, θ) be a contact manifold and̃#B : (�∗B(M), dB) −→ (V∗+1

IE (M), σIE) the
homomorphism of complexes defined in section 5 (see (25) and theorem 5.4). We consider
the homomorphism ofC∞B (M,R)-modulesHk : Vk+1

IE (M) −→ �kB(M) given by

Hk(P ) = (−1)k[(iθ (P )) (50)

for P ∈ Vk+1
IE (M). Note thatiE◦[ = [◦iθ . Furthermore, using (25), (50) and proposition 9.1,

we have that̃#B(Hk(P )) = P andHk(#̃B(α)) = α, for P ∈ Vk+1
IE (M) and α ∈ �kB(M).

Therefore, in this case,̃#B : (�∗B(M), dB) −→ (V∗+1
IE (M), σIE) is an isomorphism of

complexes andHk
B(M)

∼= Hk+1
LJE (M).

In [5] (see also [7]) the authors have proved that ifM is a(2m+1)-dimensional contact
manifold, the canonical homology groupH can

k (M) is isomorphic to the basic de Rham
cohomology groupH 2m−k

B (M). Using this result, theorem 9.2 and remark 9.3, we conclude
the following.

Corollary 9.4. Let M be a(2m + 1)-dimensional contact manifold with associated Jacobi
structure(3,E). Then, thekth E-LJ-cohomology groupHk

LJE(M) is isomorphic to the
(2m+1−k)th canonical homology groupH can

2m+1−k(M). Thus, there exists also the following
isomorphism:

Hk
LJ(M)

∼= H can
2m+1−k(M)⊕H can

2m−k(M).

Theorem 9.2 also allows us to obtain sufficient conditions to ensure the finiteness of the
LJ-cohomology groups of a particular class of compact contact manifolds. In fact, using
theorem 9.2 and the results of [1] (see also [28, theorem 10.13, p 139]), we deduce the
following.
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Corollary 9.5. LetM be a compact contact manifold with associated Jacobi structure(3,E).
Suppose that there exists a Riemannian metricg onM such thatE is Killing with respect
to g. Then the LJ-cohomology groups have finite dimension.

Next, we will compute the LJ-cohomology of a non-regular compact contact manifold
on which there exists a Riemannian metric such that the Reeb vector field is Killing with
respect to it.

Note that, in this case, it is not possible to use the results of section 7 to compute the
LJ-cohomology.

Example 9.6.Using the identification of the three-dimensional unit sphereS3 with SU(2)
given by (43) we will adapt a construction by Tanno [26] (see also [3, pp 90, 91]).

Denote byθ the contact 1-form onSU(2) in example 7.8, and by(3,E) the associated
Jacobi structure. Letg be the Riemannian metric onSU(2) ∼= S3 induced from the flat
Riemannian metric ofR4. It is well known that the Reeb vector fieldE is Killing with
respect tog (see, for instance, [3]). Moreover, with an adequate homothetic transformation
of the usual Riemannian metric of constant curvature 1 onS2, we have that the Hopf
fibrationπ : SU(2) ∼= S3 −→ S2 is a Riemannian submersion. On the other hand, a direct
computation using (43) proves thatg is a left invariant metric onSU(2).

Now, suppose thata ∈ SU(2) satisfiesas = 1 for some integers > 1, and denote byρ
the left translation bya. Sinceρ preserves the contact 1-formθ , the vector fieldE and the
metricg, we deduce thatρ induces an automorphism̄ρ of the standard K̈ahler structure of
S2 (see [27]).

Let 0 be the finite cyclic subgroup ofSU(2) generated bya. Then, the space of
right cosetsM = 0 \ SU(2) is a compact manifold. Furthermore, the 1-formθ and the
Riemannian metricg induce a contact 1-form̃θ and a Riemannian metric̃g onM such that
the projected vector field̃E is Killing with respect tog̃. It is obvious thatẼ is the Reeb
vector field of the contact manifold(M, θ̃).

It is not hard to choosea ∈ SU(2) such that the induced automorphism̄ρ is non-trivial.
Thus, using the fact that̄ρ has fixed points, we deduce that the orbits ofE over such fixed
points are invariant byρ. Therefore, the period function of̃E on M is not constant, and
the contact manifold(M, θ̃) is not regular.

Next, we will compute the basic de Rham cohomology of(M, θ̃).
It is clear thatH 1

dR(M) = {0} (note that the fundamental group ofM is the finite cyclic
group0). Consequently, using the results of [28, p 119]) we have that

H 0
B(M) = 〈[1]〉 ∼= R H 1

B(M) = {0}. (51)

Now, from theorem 9.23 of [28], we deduce that the cohomology class [dθ̃ ] ∈ H 2
B(M) is

nontrivial. Thus, sinceH 2
B(M)

∼= R (see theorem 10.17 of [28]) it follows that

H 2
B(M) = 〈[dθ̃ ]〉 ∼= R. (52)

Finally, using (51), (52) and theorem 9.2, we conclude that

H 0
LJ(M) = 〈[1]〉 ∼= R H 1

LJ(M) = 〈[Ẽ]〉 ∼= R
H 2

LJ(M) = 〈[3̃]〉 ∼= R H 3
LJ(M) = 〈[Ẽ ∧ 3̃]〉 ∼= R

where(3̃, Ẽ) is the Jacobi structure associated to the contact manifold(M, θ̃).

10. Lichnerowicz–Jacobi cohomology of locally conformal symplectic manifolds

In this section we shall study the LJ-cohomology of a l.c.s. manifold.
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Let (M,�) be a l.c.s. manifold with Lee 1-formω. We consider the differential operator
dω : �k(M) −→ �k+1(M) given by

dω(α) = dα + ω ∧ α (53)

for α ∈ �k(M). We deduce that d2ω = 0. Thus, we have the corresponding differential
complex(�∗(M), dω). Denote byH ∗ω(M) the cohomology of this complex.

Proposition 10.1.Let M be a l.c.s. manifold with Lee 1-formω. Then:
(i) The differential complex(�∗(M), dω) is elliptic. Therefore, ifM is compact the

cohomology groupsHk
ω(M) have finite dimension.

(ii) If M is a g.c.s. manifold thenHk
dR(M)

∼= Hk
ω(M).

Proof.
(i) A direct computation proves that the differential operators d and dω have the same

symbol. Thus, the result follows.
(ii) Assume thatω = df with f ∈ C∞(M,R). Using (53), we obtain that the mapping

Hk
dR(M) −→ Hk

ω(M) [α] −→ [e−f α]

is an isomorphism. �
Now, suppose that(3,E) is the associated Jacobi structure on a l.c.s. manifold(M,�)

with Lee 1-formω. From (9) and (53), we deduce that

iE ◦ dω + dω ◦ iE = LE and LE ◦ dω = dω ◦ LE. (54)

These results allow us to introduce the subcomplex of the complex(�∗(M), dω) given by:

· · · −→ �k−1
B (M)

dωB−→�kB(M)
dωB−→�k+1(M) −→ · · ·

where dωB = (dω)|�∗B(M). Denote byH ∗ωB(M) the cohomology of(�∗B(M), dωB).
Next, we will obtain sufficient conditions which ensure the finiteness of the cohomology

groupsHk
ωB(M).

Using (9) and proceeding as in the proof of proposition 10.1, we have the following.

Proposition 10.2.LetM be a g.c.s. manifold with Lee 1-formω. Then,Hk
ωB(M)

∼= Hk
B(M).

In particular, ifHk
B(M) has finite dimension thenHk

ωB(M) also has finite dimension.

Example 10.3.Let (M̄, 8̄, η̄) be a cosymplectic manifold with Reeb vector fieldξ̄ . We
define the differential operator dη̄ : �k(M̄) −→ �k+1(M̄) by

dη̄(ᾱ) = dᾱ + η̄ ∧ ᾱ (55)

for α ∈ �k(M̄). Since d2η̄ = 0, we can consider the corresponding differential complex

(�∗(M̄), dη̄) whose cohomology groups are denoted byH ∗η̄ (M̄).
Now, assume that [̄8] ∈ H 2(M̄,Z) and letπ : M −→ M̄ be the principal circle bundle

over M̄ corresponding to [̄8]. If θ is a connection form inπ : M −→ M̄ with curvature
form 8̄, we define onM the 2-form� given by

� = dθ − (π∗η̄) ∧ θ = π∗8̄− (π∗η̄) ∧ θ. (56)

Then, it can be proved (see [6, 7]) that(M,�) is a regular l.c.s. manifold with Lee 1-form

ω = π∗η̄. (57)

The corresponding quotient Poisson manifold is(M̄, 8̄, η̄).
On the other hand, it is clear that the isomorphismπ∗ : �k(M̄) −→ �kB(M) satisfies

dωB ◦ π∗ = π∗ ◦ dη̄ (see (53), (55) and (57)). Therefore,Hk
ωB(M)

∼= Hk
η̄ (M̄). In particular,

if the dimension ofHk
η̄ (M̄) is finite then the dimension ofHk

ωB(M) is also finite.
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Finally, we will consider a particular case. Suppose that(N̄, �̄) is a quantizable
symplectic manifold and thatM̄ is the product manifoldN̄ × R with the cosymplectic
structure(8̄, η̄) given by

8̄ = pr∗1(�̄) and η̄ = pr∗2(dt) (58)

wheret is the usual coordinate onR andpr1, pr2 are the canonical projections of̄M onto
the first and second factor, respectively. In this case,(M,�) is a g.c.s. manifold and, from
proposition 10.2, we have that

Hk
ωB(M)

∼= Hk
η̄ (M̄)

∼= Hk
dR(M̄)

∼= Hk
dR(N̄). (59)

Let (M,�) be a compact l.c.s. manifold with associated Jacobi structure(3,E). If
E 6= 0 at every point and there exists a Riemannian metricg onM such thatE is Killing
with respect tog then the cohomology groupsHk

B(M) have finite dimension (see [1, 28]).
We will show that these conditions also ensure the finiteness of the cohomology groups
Hk
ωB(M). We remark that, under the above conditions,M cannot be a g.c.s. manifold

(note that aC∞ real-valued function on a compact manifold always has at least two critical
points).

Theorem 10.4.Let M be a 2m-dimensional compact l.c.s. manifold with Lee 1-formω 6= 0
at every point. Suppose that(3,E) is the associated Jacobi structure onM and that there
exists a Riemannian metricg on M such thatE is Killing with respect tog. Then the
cohomology groupsHk

ωB(M) have finite dimension, for 06 k 6 2m.

Proof. Note thatE 6= 0 at every point. Thus, by renormalizing the metricg, if necessary,
we can assume thatE is a unit vector field. Consequently, ifθ is the 1-form onM given
by θ(X) = g(X,E) for X ∈ X(M), we have that

θ(E) = 1 and LEθ = 0. (60)

Let I(M) be the isometry group of(M, g). SinceM is compact,I(M) is a compact Lie
group. Moreover, ifφ : R × M −→ M is the flow of the vector fieldE, {φt }t∈R is a
subgroup ofI(M) whose closureG in I(M) is compact, connected and Abelian, hence a
torus.

Denote byT : M ×G −→ M the action ofG onM and by�k(M)G the subspace of
�k(M) of G-invariant k-forms, that is,�k(M)G = {α ∈ �k(M)|T ∗a α = α, ∀a ∈ G}. We
remark that ak-form α onM is G-invariant if and only ifLEα = 0.

Using (54), we deduce that ifα ∈ �k(M)G then dωα ∈ �k+1(M)G. Therefore, we can
introduce the invariant differential complex

· · · −→ �k−1(M)G
dω−→�k(M)G dω−→�k+1(M)G −→ · · · .

We are going to prove that the invariant cohomology groupsH ∗ω(M)
G have finite dimension.

To do this, we consider, for every 06 k 6 2m, the homomorphism(ik)∗ :
Hk
ω(M)

G −→ Hk
ω(M) induced by the canonical inclusionik : �k(M)G −→ �k(M). We

will show that(ik)∗ is injective, which would imply thatHk
ω(M)

G has finite dimension (see
proposition 10.1).

We orientateG and let ν be the unique bi-invariant volume form onG such that∫
G
ν = 1.
Regard(M × G,πM,M,G) as a trivial, oriented bundle, and letπG : M × G −→ G

denote the canonical projection. Then, a linear mapIν : �k(M ×G) −→ �k(M) is defined
by

Iνα =
∫
G
�� α ∧ π∗Gν
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for α ∈ �k(M ×G), where
∫
G
�� is the integral over the fibre (see [11, vol I]). Thus, we can

define a linear mappk = Iν ◦ T ∗ : �k(M) −→ �k(M) by

pk(α) =
∫
G
�� T ∗α ∧ π∗Gν. (61)

We have thatpk(α) ∈ �k(M)G andpk ◦ ik = I d|�k(M)G (see [11, vol II, p 150]).
From (9), we obtain that

T ∗ω ∧ π∗Gν = π∗Mω ∧ π∗Gν. (62)

On the other hand, ifα ∈ �k(M) then, using (61), (62) and the properties of the integral
over the fibre (see [11, vol I, pp 303, 304]), we deduce that

pk+1(dωα) =
∫
G
�� (d(T ∗α ∧ π∗Gν)+ π∗Mω ∧ T ∗(α) ∧ π∗Gν)

= d

(∫
G
�� T ∗α ∧ π∗Gν

)
+ ω ∧

∫
G
�� (T ∗α ∧ π∗Gν) = dω(pk(α)).

Consequently, the linear mappk : �k(M) −→ �k(M)G induces a homomorphism
(pk)

∗ : Hk
ω(M) −→ Hk

ω(M)
G, and a direct computation shows that(pk)

∗◦(ik)∗ = I d|Hk
ω(M)

G .
This implies that(ik)∗ : Hk

ω(M)
G −→ Hk

ω(M) is a monomorphism, and henceHk
ω(M)

G has
finite dimension.

Finally, we will prove that the spaceHk
ωB(M) has finite dimension, for all integersk.

From (60), we obtain that the following sequence of real vector spaces

0−→ �kB(M)
jk−→�k(M)G τk−→�k−1

B (M) −→ 0

is exact, wherejk is the canonical inclusion andτk is the homomorphism defined byτk(α) =
iEα, for α ∈ �k(M)G. Moreover, a direct computation shows that dω ◦ jk = jk+1 ◦ dωB and
−dωB ◦ τk = τk+1 ◦ dω, for all k. Therefore, we obtain an exact sequence of complexes

0−→ (�∗B(M), dωB)
j−→(�∗(M)G, dω)

τ−→(�∗−1
B (M),−dωB) −→ 0

which induces a long exact cohomology sequence

· · · −→ Hk
ωB(M)

(jk)
∗

−→Hk
ω(M)

G (τk)
∗

−→Hk−1
ωB (M)

1∗k−→Hk+1
ωB (M) −→ · · ·

with connecting homomorphism1∗. Thus, using that the spaceHk
ω(M)

G has finite
dimension for allk, we deduce that the spaceHk

ωB(M) has also finite dimension for all
k. �

Remark 10.5.Let (M̄, 8̄, η̄) be a compact cosymplectic manifold such that [8̄] ∈
H 2(M̄,Z). Suppose thatπ : M −→ M̄ is the principal circle bundle over̄M corresponding
to [8̄]. Then,M is a compact regular l.c.s. manifold (see example 10.3). Furthermore, if
(3,E) is the associated Jacobi structure onM, θ is a connection form inπ : M −→ M̄ and
ḡ is a Riemannian metric on̄M, we have thatE is Killing with respect to the Riemannian
metric g on M given by g = π∗ḡ + θ ⊗ θ (note thatE is the infinitesimal generator of
the action ofS1 onM). Consequently, from theorem 10.4, we obtain that the cohomology
groupsHk

ωB(M) have finite dimension.

Next, we will see that the LJ-cohomology of a particular class of l.c.s. manifolds is
completely determined by the basic de Rham cohomology and the cohomology of the
subcomplex(�∗B(M), dωB). For this purpose, we will recall some definitions and results.
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Let (M,�) be a l.c.s. manifold. Denote by[ : X(M) −→ �1(M) the isomorphism
of C∞(M,R)-modules defined by[(X) = iX�. The isomorphism[ : X(M) −→ �1(M)

can be extended to a mapping, which we also denote by[, from the spaceVk(M) onto the
space�k(M) by putting:

[(X1 ∧ . . . ∧Xk) = [(X1) ∧ . . . ∧ [(Xk) (63)

for X1, . . . , Xk ∈ X(M). Thus, [ is also an isomorphism ofC∞(M,R)-modules.
Furthermore, if # :�k(M) −→ Vk(M) is the mapping defined in section 5 (see (18))
then, using (19), (63) and remark 2.1, we obtain

#α = (−1)k[−1(α) (64)

for α ∈ �k(M).
On the other hand, a vector fieldX on M is said to be aninfinitesimal automorphism

of (M,�) if LX� = 0. We denote byX�(M) the space of the infinitesimal automorphisms
of (M,�). If X ∈ X�(M) andω is the Lee 1-form ofM then, from (7), we deduce that
LXω = d(ω(X)) = 0, which implies thatω(X) is constant. Moreover, ifX, Y ∈ X�(M)

then [X, Y ] ∈ X�(M). Thus,X�(M) is a Lie subalgebra of the Lie algebraX(M) of the
vector fields onM (see [29]).

Now, consider the homomorphisml : X�(M) −→ R defined byl(X) = ω(X), for
X ∈ X�(M). We call l theLee homomorphismof X�(M) (see [29]). Sinceω is closed,l is
a Lie algebra homomorphism for the commutative Lie algebra structure ofR and it is clear
that the homomorphisml is trivial or an epimorphism. In the latter case the l.c.s. manifold
M is said to beof the first kind [29]. We remark that a l.c.s. manifold(M,�) is of the
first kind if and only if there existsX ∈ X�(M) such thatl(X) 6= 0. In fact, we have the
following theorem which gives the structure of a l.c.s. manifold of the first kind.

Theorem 10.6 ([29]).Let (M,�) be a 2m-dimensional l.c.s. manifold of the first kind with
Lee 1-formω, and denote by(3,E) its associated Jacobi structure. Then, there exists
U ∈ X�(M) such thatl(U) = ω(U) = 1 and, ifθ is the 1-form onM given byθ = −[(U),
we have:

� = dθ − ω ∧ θ θ(E) = 1 iU dθ = iE dθ = 0 [E,U ] = 0.

Moreover,ω ∧ θ ∧ (dθ)m−1 is a volume form onM.
If (M,�) is a l.c.s. manifold of the first kind andU ∈ X�(M) is such thatω(U) = 1

thenU is said to be a basic infinitesimal automorphism of(M,�).

If #B is the restriction of # to the basic forms andσI is the LJ-cohomology operator,
we obtain the following.

Theorem 10.7.Let (M,�) be a l.c.s. manifold of the first kind with Lee 1-formω. Suppose
that Fk : �kB(M) ⊕ �k−1

B (M) −→ VkI (M) is the homomorphism ofC∞B (M,R)-modules
given by

Fk(α, β) = #B(α)+ U ∧ #B(β)

U being a basic infinitesimal automorphism of(M,�). Then:
(i) Fk induces an isomorphism of complexesF : (�∗B(M),−dB)⊕(�∗−1

B (M), dωB) −→
(V∗I (M), σI ).

(ii) For everyk, 06 k 6 dimM, we have thatHk
LJ(M)

∼= Hk
B(M)⊕Hk−1

ωB (M).
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Proof. Using (63) and the fact thatLU� = 0, we deduce thatLU ◦ [ = [ ◦ LU . Thus, by
(8), it follows thatLU3 = 0 which implies that (see (13))

σI (U) = E ∧ U. (65)

Therefore, from (53), (65), theorem 10.6 and the results of section 5, we have thatF is a
homomorphism of complexes.

On the other hand, sinceLE ◦ [ = [ ◦ LE , we can define the homomorphism of
C∞B (M,R)-modulesGk : VkI (M) −→ �kB(M)⊕�k−1

B (M) by

Gk(P ) = ((−1)k([(P )− θ ∧ iE[(P )), (−1)kiE[(P ))

for P ∈ VkI (M), where θ is the 1-form onM given by θ = −[(U) = −iU� (see
theorem 10.6).

Then, using (19), (63), (64), theorem 10.6 and the fact that #(θ) = U , we deduce that
Gk is the inverse homomorphism ofFk. �
Example 10.8.Let (M̄, 8̄, η̄) be a cosymplectic manifold with Reeb vector fieldξ̄ . Suppose
that [8̄] ∈ H 2(M̄,Z) and denote byπ : M −→ M̄ the principal circle bundle over̄M
corresponding to [̄8]. We consider onM the 2-form� given by (56). Then(M,�)
is a regular l.c.s. manifold of the first kind (see [7] and example 10.3). In fact, from
(56) and (57), we obtain thatU = ξ̄H is a basic infinitesimal automorphism of(M,�).
Moreover, using theorem 10.7 and the results obtained in example 10.3, we have that
Hk

LJ(M)
∼= Hk

dR(M̄)⊕Hk−1
η̄ (M̄).

In the particular case when̄M is the product of a quantizable symplectic manifold
(N̄, �̄) with R, we deduce (see (59))

Hk
LJ(M)

∼= Hk
dR(N̄)⊕Hk−1

dR (N̄). (66)

Note that, in this case, ifN is the total space of the principal circle bundle overN̄
corresponding to [̄�] ∈ H 2(N̄,Z), thenM = N × R and, from (66) and corollary 7.7,
it follows thatN is a regular contact manifold andHk

LJ(M)
∼= Hk

LJ(N).

Using the results of [1] and theorems 10.4 and 10.7, we obtain sufficient conditions to
ensure the finiteness of the LJ-cohomology groups of a particular class of l.c.s. manifolds
of the first kind.

Corollary 10.9.Let M be a 2m-dimensional compact l.c.s. manifold of the first kind.
Suppose that(3,E) is the associated Jacobi structure onM and thatg is a Riemannian
metric onM such thatE is Killing with respect tog. Then the LJ-cohomology groups
Hk

LJ(M) have finite dimension, for 06 k 6 2m.

In the remainder of this section we will study the relation between the canonical
homology and the LJ-cohomology of a l.c.s. manifold of the first kind.

Let M be a 2m-dimensional l.c.s. manifold of the first kind with Lee 1-formω and
let U be a basic infinitesimal automorphism ofM. Denote by�kBU(M) the subspace of
�kB(M) given by�kBU(M) = {α ∈ �kB(M)/iUα = 0}.

We define the operator dBU : �kBU(M) −→ �k+1
BU (M) by (see [7])

dBUα = dα − ω ∧ iU dα. (67)

We have that d2BU = 0 (see [7]) and thus we can consider the corresponding differential
complex(�∗BU(M), dBU) whose cohomology is denoted byH ∗BU(M).

In [7], using an adequate star operator, the authors proved that

H can
k (M) ∼= H 2m−k−1

BU (M)⊕H 2m−k−2
BU (M). (68)
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Remark 10.10.Examples of compact l.c.s. manifoldsM of the first kind exist such that the
LJ-cohomology groups ofM have finite dimension and, however, the canonical homology
groups have infinite dimension. Consider, for example, the following case: let(N̄, �̄) be a
(2m−2)-dimensional compact quantizable symplectic manifold and(8̄, η̄) the cosymplectic
structure given by (48) on the product manifold̄M = N̄ × S1. If π : M −→ M̄ is the
principal circle bundle overM̄ corresponding to [̄8] then the total spaceM is a compact
regular l.c.s. manifold of the first kind andU = ξ̄H is a basic infinitesimal automorphism of
M, ξ̄ being the Reeb vector field of̄M (see example 10.8). Since the canonical homology
of a regular Jacobi manifold is isomorphic to the canonical homology of the corresponding
quotient Poisson manifold (see [7] and section 6) then, using corollary 8.3 and the results
obtained in example 8.4, we deduce that

H can
k (M) ∼= (H 2m−k−1

dR (N̄)⊗ C∞(S1,R))⊕ (H 2m−k−2
dR (N̄)⊗ C∞(S1,R)).

In fact, in [7] it was proved that the cohomology groupsHk
BU(M) and Hk

ξ̄
(M̄) are

isomorphic.

Now, we return to the general case of a l.c.s. manifoldM of the first kind. If#̃B denotes
the homomorphism ofC∞B (M,R)-modules defined by (25) andσIE is the restriction of the
LJ-cohomology operatorσI to V∗IE(M), we obtain the following.

Theorem 10.11.Let (M,�) be a l.c.s. manifold of the first kind andU a basic infinitesimal
automorphism ofM. Suppose that(3,E) is the associated Jacobi structure onM and that
F̃k : �k−1

BU (M)⊕�k−2
BU (M) −→ VkIE(M) is the homomorphism ofC∞B (M,R)-modules given

by

F̃k(α, β) = #̃B(α)+ U ∧ #̃B(β).

(i) F̃k induces an isomorphism of complexes̃F : (�∗−1
BU (M), dBU) ⊕

(�∗−2
BU (M),−dBU) −→ (V∗IE(M), σIE).
(ii) For every k, 0 6 k 6 dimM, we have thatHk

LJE(M)
∼= Hk−1

BU (M) ⊕ Hk−2
BU (M),

whereHl
BU(M) = {0} if l < 0.

Proof. Proceeding as in the proof of theorem 10.7, we can show thatF̃ is an isomorphism
of complexes. In fact, the inverse homomorphism ofF̃k is given by

F̃−1
k (P ) = ((−1)k−1(iU [(P )− θ ∧ iEiU [(P )), (−1)k−2iEiU [(P ))

for P ∈ VkIE(M), whereθ is the 1-form onM given byθ = −iU�. �
Finally, from (68) and theorem 10.11, we conclude with the following.

Corollary 10.12.Let M be a 2m-dimensional l.c.s. manifold of the first kind. Then the
kth canonical homology groupH can

k (M) is isomorphic to the(2m− k)th E-LJ-cohomology
groupH 2m−k

LJE (M).

Remark 10.13.There exist examples of compact l.c.s. manifoldsM of the first kind such that
the LJ-cohomology groups ofM have finite dimension and however theE-LJ-cohomology
groups have infinite dimension (see remark 10.10 and corollary 10.12).

11. A non-transitive example

Let R4 be the four-dimensional Euclidean space. Denote by(x1, x2, x3, x4) the usual
coordinates onR4 and byf : R4 −→ R theC∞ real-valued function given by

f (x1, x2, x3, x4) =
4∑
i=1

(xi)2. (69)
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Consider onR4 the Jacobi structure(3,E) defined by

3 = πf
(
∂

∂x1
∧ ∂

∂x2
+ ∂

∂x3
∧ ∂

∂x4

)
E = 2π

(
x1 ∂

∂x2
− x2 ∂

∂x1
+ x3 ∂

∂x4
− x4 ∂

∂x3

)
.

If D is the characteristic foliation of(R4,3,E) then a direct computation proves that
Dx = TxR4 if x ∈ R4 − {0} andDx = {0} if x = 0. Thus, the characteristic foliation has
two leaves:L1 = R4 − {0} andL2 = {0}. The Jacobi structure(31, E1) = (3|L1, E|L1)

induced on the leafL1 is g.c.s.. In fact, such a structure is defined by the g.c.s. 2-form�1

on L1 given by

�1 = 1

πf1
i∗1(dx

1 ∧ dx2+ dx3 ∧ dx4) (70)

wherei1 : R4− {0} −→ R4 is the canonical inclusion andf1 = f ◦ i1. The Lee 1-formω1

is

w1 = −d(ln f1) = − 2

f1
i∗1

( 4∑
i=1

xi dxi
)
. (71)

Now, we consider the vector fieldU on R4 defined by

U = −1

2

4∑
i=1

xi
∂

∂xi
.

If U1 is the restriction ofU to L1 = R4 − {0}, a direct computation, using (69)–(71),
proves thatU1 is a basic infinitesimal automorphism of(L1, �1). Therefore,L1 is a g.c.s.
manifold of the first kind. Moreover,(L1,31, E1) is a regular Jacobi manifold. In fact, if
we identifyL1 with the product manifoldS3× R via the diffeomorphism

F : L1 −→ S3× R x −→
(
x

‖x‖ , ln ‖x‖
)

thenF∗E1 is the infinitesimal generator of the usual action ofS1 on S3. Consequently,L1

and the quotient manifoldL1/E1 can be identified with the product manifoldsS3 × R and
S2×R, respectively in such a sense that the canonical projectionτ : L1 −→ L1/E1 is just
the mappingπ × Id|R : S3× R −→ S2× R, whereπ : S3 −→ S2 is the Hopf fibration.

Thus, using proposition 10.2, theorem 10.7 and the above results, we deduce that

H 0
LJ(R

4− {0}) = 〈[1]〉 ∼= R H 1
LJ(R

4− {0}) = 〈[f1U1]〉 ∼= R
H 2

LJ(R
4− {0}) = 〈[31]〉 ∼= R H 3

LJ(R
4− {0}) = 〈[f1U1 ∧31]〉 ∼= R

H 4
LJ(R

4− {0}) = {0}.
(72)

Note that [E1] = [0] since

E1 = σI1(− ln f1) (73)

whereσI is the LJ-cohomology operator onR4 andσI1 = (σI )|L1.
Next, we will obtain some results on the LJ-cohomology of the Jacobi manifold

(R4,3,E). In particular, we will prove that the LJ-cohomology ofR4 is not isomorphic to
the LJ-cohomology of the leafL1 = R4− {0}.

From (72), we have that dimHi
LJ(R4) > 1 for 06 i 6 3. In fact, we deduce:

(i) [fU ] 6= 0 in H 1
LJ(R4);
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(ii) [3] 6= 0 in H 2
LJ(R4);

(iii) [ fU ∧3] 6= 0 in H 3
LJ(R4).

On the other hand, ifg ∈ C∞B (R4,R) then (see (13))

σI (g) = −#(dg) = πf
(
∂g

∂x2

∂

∂x1
− ∂g

∂x1

∂

∂x2
+ ∂g

∂x4

∂

∂x3
− ∂g

∂x3

∂

∂x4

)
and σI (g) = 0 implies g|L1 = constant. Thus, by continuity,g = constant onR4, and
H 0

LJ(R4) ∼= R.
Now, we will show that dimH 1

LJ(R4) > 2.
If we suppose that [E] = [0] in H 1

LJ(R4) then there existsg ∈ C∞B (R4,R) such that
E = σI (g). By restricting ourselves toL1 = R4−{0} and from (72) and (73), it follows that
ln f1 = c−g1, c being a constant andg1 = g◦i1. But this would imply that the function lnf1

admits aC∞-differentiable extension toR4 which it is not possible. Therefore [E] 6= [0] in
H 1

LJ(R4). Using (72) and (73), we deduce that [E] and [fU ] are independent cohomology
classes inH 1

LJ(R4).
Finally, we will prove that dimH 2

LJ(R4) > 2.
If we suppose that [fE ∧ U ] = [0] in H 2

LJ(R4) then there existsX ∈ X(R4) such that
[E,X] = 0 andfE ∧ U = σI (X). By restricting ourselves toL1 and from (72) and (73),
we obtain that

X1+ (f1 ln f1)U1 = σI1(g1)+ λf1U1 (74)

with g1 ∈ C∞B (L1,R), λ ∈ R and X1 = X|L1. Sinceω1(σI1(g1)) = 31(ω1, dg1) =
−E1(g1) = 0, we have that (see (71))

f 2
1 ln f1 = 2

( 4∑
j=1

xjX
j

)
◦ i1+ λf 2

1

whereX = ∑4
j=1X

j ∂
∂xj

. But this would imply that the functionf 2
1 ln f1 admits aC∞-

differentiable extension toR4 which it is not possible. Consequently, [fE ∧ U ] 6= [0]
in H 2

LJ(R4). Using (72) and (73), we conclude that [3] and [fE ∧ U ] are independent
cohomology classes inH 2

LJ(R4).
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